Emmabuntus, Ubuntu, Derivate, Linux, Open Source BackTrack, Linux, distributions, Ubuntu, derivate, securuty, forensic VirtualBox, Linux, Ubuntu, Raring Ringtail synaptic, Ubuntu, Linux, software packages jwplayer, multimedia, Linux, Ubuntu, flash Meshlab, graphic, software, Ubuntu, open source, Linux Synapse, Linux, Ubuntu, raring, Quantal Gimp, Ubuntu, Linux FreeMind, Linux, open source Linux, infographic, history

The Internet Software Consortium DHCP Client, dhclient, provides a means for configuring one or more network interfaces

The Internet Software Consortium DHCP Client, dhclient, provides a means for configuring one or more network interfaces using the Dynamic Host Configuration Protocol, BOOTP protocol, or if these protocols fail, by statically assigning an address.
OPERATION

The DHCP protocol allows a host to contact a central server which maintains a list of IP addresses which may be assigned on one or more subnets. A DHCP client may request an address from this pool, and then use it on a temporary basis for communication on network. The DHCP protocol also provides a mechanism whereby a client can learn important details about the network to which it is attached, such as the location of a default router, the location of a name server, and so on.

On startup, dhclient reads the dhclient.conf for configuration instructions. It then gets a list of all the network interfaces that are configured in the current system. For each interface, it attempts to configure the interface using the DHCP protocol.

In order to keep track of leases across system reboots and server restarts, dhclient keeps a list of leases it has been assigned in the dhclient.leases(5) file. On startup, after reading the dhclient.conf file, dhclient reads the dhclient.leases file to refresh its memory about what leases it has been assigned.


When a new lease is acquired, it is appended to the end of the dhclient.leases file. In order to prevent the file from becoming arbitrarily large, from time to time dhclient creates a new dhclient.leases file from its in-core lease database. The old version of the dhclient.leases file is retained under the name dhclient.leases~ until the next time dhclient rewrites the database.

Old leases are kept around in case the DHCP server is unavailable when dhclient is first invoked (generally during the initial system boot process). In that event, old leases from the dhclient.leases file which have not yet expired are tested, and if they are determined to be valid, they are used until either they expire or the DHCP server becomes available.

A mobile host which may sometimes need to access a network on which no DHCP server exists may be preloaded with a lease for a fixed address on that network. When all attempts to contact a DHCP server have failed, dhclient will try to validate the static lease, and if it succeeds, will use that lease until it is restarted.

A mobile host may also travel to some networks on which DHCP is not available but BOOTP is. In that case, it may be advantageous to arrange with the network administrator for an entry on the BOOTP database, so that the host can boot quickly on that network rather than cycling through the list of old leases.
COMMAND LINE

The names of the network interfaces that dhclient should attempt to configure may be specified on the command line. If no interface names are specified on the command line dhclient will normally identify all network interfaces, elimininating non-broadcast interfaces if possible, and attempt to configure each interface.

It is also possible to specify interfaces by name in the dhclient.conf(5) file. If interfaces are specified in this way, then the client will only configure interfaces that are either specified in the configuration file or on the command line, and will ignore all other interfaces.

If the DHCP client should listen and transmit on a port other than the standard (port 68), the -p flag may used. It should be followed by the udp port number that dhclient should use. This is mostly useful for debugging purposes. If a different port is specified for the client to listen on and transmit on, the client will also use a different destination port - one greater than the specified destination port.

The DHCP client normally transmits any protocol messages it sends before acquiring an IP address to, 255.255.255.255, the IP limited broadcast address. For debugging purposes, it may be useful to have the server transmit these messages to some other address. This can be specified with the -s flag, followed by the IP address or domain name of the destination.

For testing purposes, the giaddr field of all packets that the client sends can be set using the -g flag, followed by the IP address to send. This is only useful for testing, and should not be expected to work in any consistent or useful way.

The DHCP client will normally run in the foreground until it has configured an interface, and then will revert to running in the background. To run force dhclient to always run as a foreground process, the -d flag should be specified. This is useful when running the client under a debugger, or when running it out of inittab on System V systems.

The client normally prints a startup message and displays the protocol sequence to the standard error descriptor until it has acquired an address, and then only logs messages using the syslog (3) facility. The -q flag prevents any messages other than errors from being printed to the standard error descriptor.

The client normally doesn't release the current lease as it is not required by the DHCP protocol. Some cable ISPs require their clients to notify the server if they wish to release an assigned IP address. The -r flag explicitly releases the current lease, and once the lease has been released, the client exits.

The -1 flag cause dhclient to try once to get a lease. If it fails, dhclient exits with exit code two.

The DHCP client normally gets its configuration information from /etc/dhclient.conf, its lease database from /var/lib/dhcp/dhclient.leases, stores its process ID in a file called /var/run/dhclient.pid, and configures the network interface using /sbin/dhclient-script To specify different names and/or locations for these files, use the -cf, -lf, -pf and -sf flags, respectively, followed by the name of the file. This can be particularly useful if, for example, /var/lib/dhcp or /var/run has not yet been mounted when the DHCP client is started.

The DHCP client normally exits if it isn't able to identify any network interfaces to configure. On laptop computers and other computers with hot-swappable I/O buses, it is possible that a broadcast interface may be added after system startup. The -w flag can be used to cause the client not to exit when it doesn't find any such interfaces. The omshell (8) program can then be used to notify the client when a network interface has been added or removed, so that the client can attempt to configure an IP address on that interface.

The DHCP client can be directed not to attempt to configure any interfaces using the -n flag. This is most likely to be useful in combination with the -w flag.

The client can also be instructed to become a daemon immediately, rather than waiting until it has acquired an IP address. This can be done by supplying the -nw flag.
CONFIGURATION
The syntax of the dhclient.conf(8) file is discussed seperately.
OMAPI
The DHCP client provides some ability to control it while it is running, without stopping it. This capability is provided using OMAPI, an API for manipulating remote objects. OMAPI clients connect to the client using TCP/IP, authenticate, and can then examine the client's current status and make changes to it.

Rather than implementing the underlying OMAPI protocol directly, user programs should use the dhcpctl API or OMAPI itself. Dhcpctl is a wrapper that handles some of the housekeeping chores that OMAPI does not do automatically. Dhcpctl and OMAPI are documented in dhcpctl(3) and omapi(3). Most things you'd want to do with the client can be done directly using the omshell(1) command, rather than having to write a special program.
THE CONTROL OBJECT
The control object allows you to shut the client down, releasing all leases that it holds and deleting any DNS records it may have added. It also allows you to pause the client - this unconfigures any interfaces the client is using. You can then restart it, which causes it to reconfigure those interfaces. You would normally pause the client prior to going into hibernation or sleep on a laptop computer. You would then resume it after the power comes back. This allows PC cards to be shut down while the computer is hibernating or sleeping, and then reinitialized to their previous state once the computer comes out of hibernation or sleep.

The control object has one attribute - the state attribute. To shut the client down, set its state attribute to 2. It will automatically do a DHCPRELEASE. To pause it, set its state attribute to 3. To resume it, set its state attribute to 4

source: About.com Linux

If you liked this article, subscribe to the feed by clicking the image below to keep informed about new contents of the blog:

rss_trappola


Related Post


Linux Links





Do you consider this article interesting? Share it on your network of Twitter contacts, on your Facebook wall or simply press "+1" to suggest this result in searches in Google, Linkedin, Instagram or Pinterest. Spreading content that you find relevant helps this blog to grow. Thank you!
Share on Google Plus

About Hugo

Ubuntu is a Linux distribution that offers an operating system predominantly focused on desktop computers but also provides support for servers. Based on Debian GNU / Linux, Ubuntu focuses on ease of use, freedom in usage restriction, regular releases (every 6 months) and ease of installation.
    Blogger Comment
    Facebook Comment

0 comments:

Post a Comment